136 research outputs found

    Imperialistic Competitive Algorithm: A metaheuristic algorithm for locating the critical slip surface in 2-Dimensional soil slopes

    Full text link
    In this study, Imperialistic Competitive Algorithm (ICA) is utilized for locating the critical failure surface and computing the factor of safety (FOS) in a slope stability analysis based on the limit equilibrium approach. The factor of safety relating to each trial slip surface is calculated using a simplified algorithm of the Morgenstern-Price method, which satisfies both the force and the moment equilibriums. General slip surface is considered non-circular in this study that is constituted by linking random straight lines. To explore the performance of the proposed algorithm, four benchmark test problems are analyzed. The results demonstrate that the present techniques can provide reliable, accurate and efficient solutions for locating the critical failure surface and relating FOS. Moreover, in contrast with previous studies the present algorithm could reach the lower value of FOS and reached more exact solutions

    Investigating bound handling schemes and parameter settings for the interior search algorithm to solve truss problems

    Full text link
    The interior search algorithm (ISA) is an optimization algorithm inspired by esthetic techniques used for interior design and decoration. The algorithm has only one parameter, controlled by θ, and uses an evolutionary boundary constraint handling (BCH) strategy to keep itself within an admissible solution space while approaching the optimum. We apply the ISA to find optimal weight design of truss structures with frequency constraints. Sensitivity of the ISA's performance to the θ parameter and the BCH strategy is investigated by considering different values of θ and BCH techniques. This is the first study in the literature on the sensitivity of truss optimization problems to various BCH approaches. Moreover, we also study the impact of different BCH methods on diversification and intensification. Through extensive numerical simulations, we identified the best BCH methods that provide consistently better results for all truss problems studied, and obtained a range of θ that maximizes the ISA's performance for all problem classes studied. However, results also recommend further fine-tuning of parameter settings for specific case studies to obtain the best results

    On N = 2 Truncations of IIB on T^{1,1}

    Get PDF
    We study the N=4 gauged supergravity theory which arises from the consistent truncation of IIB supergravity on the coset T^{1,1}. We analyze three N=2 subsectors and in particular we clarify the relationship between true superpotentials for gauged supergravity and certain fake superpotentials which have been widely used in the literature. We derive a superpotential for the general reduction of type I supergravity on T^{1,1} and this together with a certain solution generating symmetry is tantamount to a superpotential for the baryonic branch of the Klebanov-Strassler solution.Comment: 32 pages, v2:references adde

    The Effect of Axial Length on the Thickness of Intraretinal Layers of the Macula.

    Get PDF
    PURPOSE: The aim of this study was to evaluate the effect of axial length (AL) on the thickness of intraretinal layers in the macula using optical coherence tomography (OCT) image analysis. METHODS: Fifty three randomly selected eyes of 53 healthy subjects were recruited for this study. The median age of the participants was 29 years (range: 6 to 67 years). AL was measured for each eye using a Lenstar LS 900 device. OCT imaging of the macula was also performed by Stratus OCT. OCTRIMA software was used to process the raw OCT scans and to determine the weighted mean thickness of 6 intraretinal layers and the total retina. Partial correlation test was performed to assess the correlation between the AL and the thickness values. RESULTS: Total retinal thickness showed moderate negative correlation with AL (r = -0.378, p = 0.0007), while no correlation was observed between the thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer (GCC), retinal pigment epithelium (RPE) and AL. Moderate negative correlation was observed also between the thickness of the ganglion cell layer and inner plexiform layer complex (GCL+IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL) and AL which were more pronounced in the peripheral ring (r = -0.402, p = 0.004; r = -0.429, p = 0.002; r = -0.360, p = 0.01; r = -0.448, p = 0.001). CONCLUSIONS: Our results have shown that the thickness of the nuclear layers and the total retina is correlated with AL. The reason underlying this could be the lateral stretching capability of these layers; however, further research is warranted to prove this theory. Our results suggest that the effect of AL on retinal layers should be taken into account in future studies

    Loss of LMO4 in the Retina Leads to Reduction of GABAergic Amacrine Cells and Functional Deficits

    Get PDF
    BACKGROUND: LMO4 is a transcription cofactor expressed during retinal development and in amacrine neurons at birth. A previous study in zebrafish reported that morpholino RNA ablation of one of two related genes, LMO4b, increases the size of eyes in embryos. However, the significance of LMO4 in mammalian eye development and function remained unknown since LMO4 null mice die prior to birth. METHODOLOGY/PRINCIPAL FINDINGS: We observed the presence of a smaller eye and/or coloboma in ∼40% LMO4 null mouse embryos. To investigate the postnatal role of LMO4 in retinal development and function, LMO4 was conditionally ablated in retinal progenitor cells using the Pax6 alpha-enhancer Cre/LMO4flox mice. We found that these mice have fewer Bhlhb5-positive GABAergic amacrine and OFF-cone bipolar cells. The deficit appears to affect the postnatal wave of Bhlhb5+ neurons, suggesting a temporal requirement for LMO4 in retinal neuron development. In contrast, cholinergic and dopaminergic amacrine, rod bipolar and photoreceptor cell numbers were not affected. The selective reduction in these interneurons was accompanied by a functional deficit revealed by electroretinography, with reduced amplitude of b-waves, indicating deficits in the inner nuclear layer of the retina. CONCLUSIONS/SIGNIFICANCE: Inhibitory GABAergic interneurons play a critical function in controlling retinal image processing, and are important for neural networks in the central nervous system. Our finding of an essential postnatal function of LMO4 in the differentiation of Bhlhb5-expressing inhibitory interneurons in the retina may be a general mechanism whereby LMO4 controls the production of inhibitory interneurons in the nervous system

    Lmo4 in the Basolateral Complex of the Amygdala Modulates Fear Learning

    Get PDF
    Pavlovian fear conditioning is an associative learning paradigm in which mice learn to associate a neutral conditioned stimulus with an aversive unconditioned stimulus. In this study, we demonstrate a novel role for the transcriptional regulator Lmo4 in fear learning. LMO4 is predominantly expressed in pyramidal projection neurons of the basolateral complex of the amygdala (BLC). Mice heterozygous for a genetrap insertion in the Lmo4 locus (Lmo4gt/+), which express 50% less Lmo4 than their wild type (WT) counterparts display enhanced freezing to both the context and the cue in which they received the aversive stimulus. Small-hairpin RNA-mediated knockdown of Lmo4 in the BLC, but not the dentate gyrus region of the hippocampus recapitulated this enhanced conditioning phenotype, suggesting an adult- and brain region-specific role for Lmo4 in fear learning. Immunohistochemical analyses revealed an increase in the number of c-Fos positive puncta in the BLC of Lmo4gt/+ mice in comparison to their WT counterparts after fear conditioning. Lastly, we measured anxiety-like behavior in Lmo4gt/+ mice and in mice with BLC-specific downregulation of Lmo4 using the elevated plus maze, open field, and light/dark box tests. Global or BLC-specific knockdown of Lmo4 did not significantly affect anxiety-like behavior. These results suggest a selective role for LMO4 in the BLC in modulating learned but not unlearned fear

    Acute Beneficial Hemodynamic Effects of a Novel 3D-Echocardiographic Optimization Protocol in Cardiac Resynchronization Therapy

    Get PDF
    Post-implantation therapies to optimize cardiac resynchronization therapy (CRT) focus on adjustments of the atrio-ventricular (AV) delay and ventricular-to-ventricular (VV) interval. However, there is little consensus on how to achieve best resynchronization with these parameters. The aim of this study was to examine a novel combination of doppler echocardiography (DE) and three-dimensional echocardiography (3DE) for individualized optimization of device based AV delays and VV intervals compared to empiric programming.25 recipients of CRT (male: 56%, mean age: 67 years) were included in this study. Ejection fraction (EF), the primary outcome parameter, and left ventricular (LV) dimensions were evaluated by 3DE before CRT (baseline), after AV delay optimization while pacing the ventricles simultaneously (empiric VV interval programming) and after individualized VV interval optimization. For AV delay optimization aortic velocity time integral (AoVTI) was examined in eight different AV delays, and the AV delay with the highest AoVTI was programmed. For individualized VV interval optimization 3DE full-volume datasets of the left ventricle were obtained and analyzed to derive a systolic dyssynchrony index (SDI), calculated from the dispersion of time to minimal regional volume for all 16 LV segments. Consecutively, SDI was evaluated in six different VV intervals (including LV or right ventricular preactivation), and the VV interval with the lowest SDI was programmed (individualized optimization).EF increased from baseline 23±7% to 30±8 (p<0.001) after AV delay optimization and to 32±8% (p<0.05) after individualized optimization with an associated decrease of end-systolic volume from a baseline of 138±60 ml to 115±42 ml (p<0.001). Moreover, individualized optimization significantly reduced SDI from a baseline of 14.3±5.5% to 6.1±2.6% (p<0.001).Compared with empiric programming of biventricular pacemakers, individualized echocardiographic optimization with the integration of 3-dimensional indices into the optimization protocol acutely improved LV systolic function and decreased ESV and can be used to select the optimal AV delay and VV interval in CRT

    Gene expression in the rat brain: High similarity but unique differences between frontomedial-, temporal- and occipital cortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The six-layered neocortex of the mammalian brain may appear largely homologous, but is in reality a modular structure of anatomically and functionally distinct areas. However, global gene expression seems to be almost identical across the cerebral cortex and only a few genes have so far been reported to show regional enrichment in specific cortical areas.</p> <p>Results</p> <p>In the present study on adult rat brain, we have corroborated the strikingly similar gene expression among cortical areas. However, differential expression analysis has allowed for the identification of 30, 24 and 11 genes enriched in frontomedial -, temporal- or occipital cortex, respectively. A large proportion of these 65 genes appear to be involved in signal transduction, including the ion channel <it>Fxyd6</it>, the neuropeptide <it>Grp </it>and the nuclear receptor <it>Rorb</it>. We also find that the majority of these genes display increased expression levels around birth and show distinct preferences for certain cortical layers and cell types in rodents.</p> <p>Conclusions</p> <p>Since specific patterns of expression often are linked to equally specialised biological functions, we propose that these cortex sub-region enriched genes are important for proper functioning of the cortical regions in question.</p

    Non-Abelian T-duality and consistent truncations in type-II supergravity

    Get PDF
    For a general class of SO(4) symmetric backgrounds in type II-supergravity, we show that the action of non-Abelian T-duality can be described via consistent truncation to seven dimensional theories with seemingly massive modes. As such, any solution to these theories uplifts to both massive type IIA and IIB supergravities presenting an invertible map between the two. For supersymmetric backgrounds, we show that for spinors transforming under SO(4) the non-Abelian T-duality transformation breaks the original supersymmetry by half. We use these mappings to generate the non-Abelian T-duals of the maximally supersymmetric pp-wave, the Lin, Lunin, Maldacena geometries and spacetimes with Lifshitz symmetry.Comment: 41 pages, references added, published versio
    corecore